3.443 \(\int (a+b \sec ^2(e+f x))^p \tan ^3(e+f x) \, dx\)

Optimal. Leaf size=86 \[ \frac{\left (a+b \sec ^2(e+f x)\right )^{p+1} \text{Hypergeometric2F1}\left (1,p+1,p+2,\frac{b \sec ^2(e+f x)}{a}+1\right )}{2 a f (p+1)}+\frac{\left (a+b \sec ^2(e+f x)\right )^{p+1}}{2 b f (p+1)} \]

[Out]

(a + b*Sec[e + f*x]^2)^(1 + p)/(2*b*f*(1 + p)) + (Hypergeometric2F1[1, 1 + p, 2 + p, 1 + (b*Sec[e + f*x]^2)/a]
*(a + b*Sec[e + f*x]^2)^(1 + p))/(2*a*f*(1 + p))

________________________________________________________________________________________

Rubi [A]  time = 0.0906664, antiderivative size = 86, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {4139, 446, 80, 65} \[ \frac{\left (a+b \sec ^2(e+f x)\right )^{p+1} \, _2F_1\left (1,p+1;p+2;\frac{b \sec ^2(e+f x)}{a}+1\right )}{2 a f (p+1)}+\frac{\left (a+b \sec ^2(e+f x)\right )^{p+1}}{2 b f (p+1)} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[e + f*x]^2)^p*Tan[e + f*x]^3,x]

[Out]

(a + b*Sec[e + f*x]^2)^(1 + p)/(2*b*f*(1 + p)) + (Hypergeometric2F1[1, 1 + p, 2 + p, 1 + (b*Sec[e + f*x]^2)/a]
*(a + b*Sec[e + f*x]^2)^(1 + p))/(2*a*f*(1 + p))

Rule 4139

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sec[e + f*x], x]}, Dist[1/f, Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^n)^p)/x
, x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[
n, 2] || EqQ[n, 4] || IGtQ[p, 0] || IntegersQ[2*n, p])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rubi steps

\begin{align*} \int \left (a+b \sec ^2(e+f x)\right )^p \tan ^3(e+f x) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (-1+x^2\right ) \left (a+b x^2\right )^p}{x} \, dx,x,\sec (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{(-1+x) (a+b x)^p}{x} \, dx,x,\sec ^2(e+f x)\right )}{2 f}\\ &=\frac{\left (a+b \sec ^2(e+f x)\right )^{1+p}}{2 b f (1+p)}-\frac{\operatorname{Subst}\left (\int \frac{(a+b x)^p}{x} \, dx,x,\sec ^2(e+f x)\right )}{2 f}\\ &=\frac{\left (a+b \sec ^2(e+f x)\right )^{1+p}}{2 b f (1+p)}+\frac{\, _2F_1\left (1,1+p;2+p;1+\frac{b \sec ^2(e+f x)}{a}\right ) \left (a+b \sec ^2(e+f x)\right )^{1+p}}{2 a f (1+p)}\\ \end{align*}

Mathematica [A]  time = 0.166738, size = 61, normalized size = 0.71 \[ \frac{\left (a+b \sec ^2(e+f x)\right )^{p+1} \left (b \text{Hypergeometric2F1}\left (1,p+1,p+2,\frac{b \sec ^2(e+f x)}{a}+1\right )+a\right )}{2 a b f (p+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[e + f*x]^2)^p*Tan[e + f*x]^3,x]

[Out]

((a + b*Hypergeometric2F1[1, 1 + p, 2 + p, 1 + (b*Sec[e + f*x]^2)/a])*(a + b*Sec[e + f*x]^2)^(1 + p))/(2*a*b*f
*(1 + p))

________________________________________________________________________________________

Maple [F]  time = 0.396, size = 0, normalized size = 0. \begin{align*} \int \left ( a+b \left ( \sec \left ( fx+e \right ) \right ) ^{2} \right ) ^{p} \left ( \tan \left ( fx+e \right ) \right ) ^{3}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(f*x+e)^2)^p*tan(f*x+e)^3,x)

[Out]

int((a+b*sec(f*x+e)^2)^p*tan(f*x+e)^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \tan \left (f x + e\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^p*tan(f*x+e)^3,x, algorithm="maxima")

[Out]

integrate((b*sec(f*x + e)^2 + a)^p*tan(f*x + e)^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \tan \left (f x + e\right )^{3}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^p*tan(f*x+e)^3,x, algorithm="fricas")

[Out]

integral((b*sec(f*x + e)^2 + a)^p*tan(f*x + e)^3, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)**2)**p*tan(f*x+e)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \tan \left (f x + e\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^p*tan(f*x+e)^3,x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e)^2 + a)^p*tan(f*x + e)^3, x)